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ABSTRACT

Diffraction theory is used in analyzing the radiation characteristics
of typic:al horn antennas. The far-side-lobc and bacK-lobe radiation has
been solved without employing equivalence prirciples which are impractical
in the problem.

A corner reflector with a magnetic line source located at the vertex
is pr-?0oaed as a model for the E-plane radiation of horn antennas. Dif-
fraction theory is applied to formulate the radiation pattern of this antenna
model. A complete pattern, including multiple interactions and images
of induced line sources, is obtained in infinite series form. Diffraction
mechanism.s3 are used for appropriate approximations in the computations.
Emphasis is made on the continuity of the radiation patterns. The com-
puted patterns are in excellent agreement with measured patterns of
typical horn antennas. Radiation intensity of the back-lobe relative to
main- lobe intensity is obtained as back-to-front ratio and plotted as a
function of antenna dimensions. A set of measured back-to-front ratios
is presented to demonstrate the validity of computation.
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THE E-PLANE RADIATION PATTERN OF AN
ANTENNA MODEL FOR HORN ANTENNAS

I. INTRODUCTION

Electromagnetic horns are widely used either as feeds or direct
radiators in antenna systems. Therefore, a complete and practical
understanding of the radiation mechanisms is important. The purpose
here is to provide this understanding by using diffraction theory as a
tool for analyzing radiation characteristics of horn antennas.

Experimentally radiation patterns of different horn lengths and
flare angles in both E- and H-planes have been meavured by Rhodes[ I].
These patterns are adequate only in the vicinity of the main lobe. For
the regions of the far side-lobes and back lobes, which are important
in EMC (Electromagnetic Compatibility) problems, more accurate
measurements are required,

Analytically, the descriptions ci the propagating modes in a horn
are sumnarized by Kraus[Z]i. In general, aperture techniques rnrist
be used to calculate the radiation pattern, and it is assumed that the
aperture distribution is that of the incident wave and is zero outside
the aperture. The patterns thus obtained give satisfactory main lobes
and near side-lobes. As for far side-lobes and back lobes, SchelkonoffIs
equivalence principles cculd be -pplied if current distributions on the
outer suvtraces were known. For a horn antenna, extreme difficulty is
involved in accurately describing the current distributions. Furthermore,
difficulty would arise in evaluating the consequent surface integrals. The
impracticality of the equivalence principles leaves radiation problem3 of
the far side-lobes and back lobes still unsolved.

'Because of the increasing power levels of individual antennas and
the increasing numbers of radiating systems in particular areas, the
characteristics of far side-lobes and back lobes have become increasingly
important in EMC problems. Since these radiation characteristics are
caused by diffraction of electromagnetic waves, it has been a natural
consequence in recent years to apply diffraction theory to the radiation
problems of horn antennas.



In 1962, Kinber [31 derived horn patterns and the coefficient of
CoU.lin.. h.... tw. U....or. by diffraction theory. Exampies are
given for both E-plane and H-plane patterns, in which discontinuities are
pointed out, and emphasis has not been made on side and back lobes. In
1963 Ohba[4] used diffraction theory to compute the radiation pattern
in the H-plane of a corner reflector. Disagreement was noted as a re-
suit of neglecting contributions from the other edges of the corner re-
flector. In 1964. Russo, Rudduck, and Peters[5] employed diffraction
theory with proper assumptions to obtain E-plane patterns of a thin-
edged and a thick-edged horn. Only the first-order diffraction terms
were used to compute the thin-edged horn pattern . The results, with
possible discontinuities left in the side and back lobes, are in good
agreement with the measured pattern. Even though the higher-order
diffraction terms and the reflections inside the horn are neglscted, the
combination of the employed concepts and assumptions constitutes a
new method of analysis for horn antennas. We shall follow this new
method to develop a more complete analysis by including the previously
neglected higher-order diffractions and the reflections inside the horn
antenna.

II. RADIATION MEC14ANISMS

The proposed antenna model is a corner reflector formed by two
perfectly conducting plane walls intersecting at an angle, 2 0E# as shown
in Fig. 1. If we let the corner reflector be infinite in extent along the
z-direction, the problaum is thus reduced to a two-dimensional one. The
primary source is a magnetic line current assumed at the vertex S.
This assumption considerably simplifies treatment in the principal E-
plane of a horn antenna fed by a waveguide supporting the TEI# mode.

The ang tar coordinate, 9, shown in Fig. 1, is the common refer-
ence angle. Th% angles * are the diffraction angles referred to each
individual wedge at which diffraction occurs. The angles Q are called
incident angles of ilumination. All the first subscripts refer to the
points at which diffraction occurs, while the second subscripts refer
to the points of origin of incident rays. This notation will be used through-
out the following discussions. There are four wedges CA, B, S# and W) to
be treated by diffraction theory. Wedges A and B have sero wedge angle.
while wedges S and W have wedge angles of 20 and 2 (w-0 E') respectively.
The property of symmetry of the reflector walbe used to simplify the
problem by considering only the upper half of the pattern.

In diffraction theory, a uniform cylindrical wave Is radiated from
the primary source in the region - 0< O E This uniform cylindrical
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Fig. 1. Corner reflector.

wave in called the geometrical optics wave which illuminates wedges
A and B. The diffractions at A and B caused by this illumination are
called the first-order diffractions which have the solutions shown in
Eq. (3Z) (Appendix A). The solutions are directicnal cylindrical waves
radiated from the wedges. The geometrical optics rays from S and the
first-order diffracted rays from A and B are shown in Fig. Za. The
first-order radiation pattern in the far-field can now be obtained by
superporition of the far-field intensities of the primary source and the

two induced 'ourceos.

To consider the diffr&ction proceset further, one can observe from
Fig. Zb that the induced source at B illuminates wedges A, S, and W to
give three second-order diffraction terms. In the same manner, the
first-order-induced source at A illuminates wedges B, S, and W to give
three more second-order diffracted waves. These six second-order-
induced sources will continue to give third- and higher-order diffraction.
The induced intensity becomes smaller with increasing order, and the
phase delay of successive illumination can be properly taken into account.

3
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Fig. 2. Radiation mechanism of the antenna model, a) Direct rays
and the lst-order diffracted rays due to illumination from
primary source at S; b) The 2nd-order diff;-actions due to
the Ist-order illumination from B; c) The first image in the
lower wall due to the lst-order diffraction at A; and d) The
2nd-order diffraction due to the first image in the lower wall.

Since the reflector has perfectly conducting walls, the diffracted
waves from A and B are reflected by the walls. The first-order diffracted
rays from A are partially reflected by the lower wall, as shown in Fig.
2c. The reflected rays can be described by the image method of Appendix
B. Figure Zd shows that wedge A is illuminated by one of the first-order
images from the lower wall. The number of images Ls determined by the
flare angle of the reflector. The effects of the reflector walls can then be
taken into account by the images and the suibsequent diffraction of the images.

When the process of diffraction and reflection described above is
completed, the far-field patterns of th" reflector antenna can be obtained
by superimposing the contributions from the primary source at S; the
induced sources at A, B, S, and W; and the images in both falls. Form-
ulation of the pattern, including all orders of diffraction and reflection,
is obtained in the next section.

4
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I11. FORMULATION OF SOLUTION IN
INFINITE SERIES FORM

Diffraction theory is briefly treated in Appendix A for both plane-
wave and uniform cylindrical-wave illuminations. The wedges of the
corner reflector studied here are all illuminated by cylindrical waves.
In Appendix B. a method of images is presented to describe the image-
waves formed inside the antenna. The diffraction theory and the method
of images are used in the following to formulate a solution for our problem.

First, referring to Figs. I and 2 a, the geometrical optics wave
rz.diated from the primary source S is a uniiorm cylindrical-wave,
defined as

(1) v* e) _ 0< + OE'

wvhere v* has point S as phase-reference, and outside the defined region
v* is identically zero. The cylindrical-wave propagation factor R-2

Exp. (-jkR) to the far-field is suppressed in Eq. (i1) because only the
angular dependence is of interest.

Wedges A and B are illuminated by the cylindrical wave from S
with zero incident-angle. Since there is no reflection term, tne dif-
fracted waves from A and B have only one term of the solutions given
by Eq. (32). Excluding the portion z-f waves diffracted into the corner
reflector, the waves directly diffracted to the far-field can be written
as

(i) ,,
(A) DkSvB(PE, 'r- 8E + 0, z) Z -- I--

D (1) =l_,Z r> > tS)
BS = vB(PE' o. - >-> - + (n

(PAS '1 'AS ir - OE + e

•' S = Bg B = n E- e
BBS'B i~-8
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(cont)

nA nB= 2,

where DA and DBS designate diffraction at A and B because of illumi-
nation from S. The superscript (I) means first-order diffraction. The

expressions of Vs in terms of ( can be obtained from Fig. 1. The

argument n is equal to 2 for both A and B because they have zero wedge

angle. It should bz noted that the notation vB follows the form of the

original solution and the subscript B has no connection with the wedge B.

The first-order radiation patterns, neglecting the reflections in-

side the corner reflector, can now be obtained by simp!y superimposing
the terms in Eqs. (I) and (2). The diqcontinuities in V at 6 = + OE-in
Eq. (1) are eliminated by D( and D(" respectively, in the manner
illustrated in Eq. (34). Although the pattern is made continuous at
0 = ±6 E, two sets of new discontinuities at 0 = ±wiz and ±(w+BE) are

observed in Eq. (2). Therefore, the first-order pattern in general has
discontinuities at these directions.

Let us next examine the reflections of the first-order rays dif-

fracted into the reflector. Since the diffracted -waves from A and B are
symmetrical with respect to 0 = 0, as can be seen from Eq. (2), the
image-waves from the reflector can be treated as in Appendix B. The
images are forined symmnetrically in the lower and upper walls. Re-
placing U of DO and J'ý in Eq. (2) by '-Zi8E - 0) and (2iBE - 0), respec-
tively, the image-waves from two walls can be obtained similar to Eq.

(44) a3

((I it= vB(PE, -(Zi+l)E + 8, 2), 4i-(i+l) E < > is<•t] iB;

i= 1,. 3 ------- h and

h (the largest integer)<-
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where the subscripts L and U indicate that the image ter.s _r- 'runi
the lz ... r and tlh upper walls, respectively. The number of images in
each wall is equal to h, as discussed in Appendix B. The division of
regions is also studied in Appendix B. When the ratio 1i/20Eis not an
integer, the valid region for the last images should be modified to

14) w (h+l)%E< 8< ir-(Zh+l)OE for the lower-wall,

and

-[y V. >0>O [i_--(2h+1)0El for the upper-wall.

Each term in Eq. (3) has its properly defined regions and is set zero
outside the region. The first image in the lower wall, caused by the
iirst-order-diffracted rays from A, is shown in Fig. Zc. Figure 3 shows
the images in the lower wall for h = 4. It is noted that the true image
waves of the diffracted waves from A are those with i ndd in the lower
wal• and i even in the upper wall.

Descriptions of the first-order diffracted waves from A and B and
their reflected waves have been completed above. The higher-order
terms to be treated in the following discussion are necessary for cases
in which small dimensions are encountered or high accuracy is desired.
Physically, the higher-order ter.-ns describe the effects of illumination
of edges by the lower-order-induced sources and their images. Mathe-
matically, they are required to overcome the discontinuities of the
lower-order terms in the radiaticn pattern. Taking the two first-order
diffraction ternr.s in Eq. (2), for instance, the discontinuities mentioned
earlier can only be eliminated by taking into account the second-order
diffraction - , the specified directions.

At 0 = ,ir/2 in Eq. (Z), wedge A is illuminated by the first-order-
induced source at B. This intensity of illumination from B to A is
called the first-order coupling coefficient,

(V) ei 1?
AB BS =

as shown in Fig. Zb. Because of symmetry, the first-order cpupliqg
coefficient from A to B in the direction 8 = -w/2 is equal to C!e. There-
fore, using Eq. (2), we have

7<

~~.~---.-
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Fig. 3. Four Iimagee in the lower-wafl.

(5) - (1)AB CBA = VB(PE, 2"

Similarly, wedge W is illuminated by both A and B at (w + OE
respectively. The coupling coefficients can be obtained in the same
manner as

(6) C(I (I)
WA - CWB = VB(pE, 2. 2_.)*

Since the diffracted waves are slowly varying functions in theneighborhood of a certain angle, it io a good approximation that wedgesA, B, and W are illuminated by uniform cylindrical waves of the inten-sities shown in Eqs. (5) and (6). Under this assumption, the second-order diffracted waves can be obtained as

8
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(7) Dý 3 C vB (b, 7.~) + vB(b, 20Efe 2w!"A 2
W

-7<o0< + ~GE
(2)

DA =B (b, -0, vb,) -+U.%0, I
DBA cBA [Vb Z +y ,

_ > O> - 1,,+ 0E),
2- -

D(2) C 0) P,-OE + 0 W, ýE < Zw-6OE;an
WA WA B w

)WB =c)[VB(PE,'2 wE_ 0, nw)]. _ > 8>_-_(2-r. OE)

where the arguments used can be obtained from Fig. 1 as

(8) A.B' +AB AB (I E + ) -T (en

*6 * = (A---ao( - -
B 1BA BA ' '' E

ýWA = JWA= -

•WB = 4'WB = Ir E -, e

nw 2--- 15'

where nW' is obtained from wedge angle, (2--nw)w, of wedge W. Next,

we note in Eq. (3) that the image waves are discontinuous at angles

6=+(1 - 1 E)' i=1, Z, 3-- (h-1),

2 W

Of



at which the wedges A and B are iiurhiiiated by th rayz ..-. -- "
of lower and -upper walls, respectively. Figure 3 shows the geometry
of the images with h=4 in the lower wall. The coupling coefficients
from the imag-.s to wedge A can be obtained from Eqs. (3) as

AcM (I) Lo 2 OE OE-, i- , -- --- h-1).A L L

By symmetry, the coupling coefficients from the images In the upper
wall to wedge B are equal to Ckj as

(9) C(i (I) VB(PE,-.-- (i+l)0E, 2), i=l,Z,- - (h-l).

The second-o-der diffraction at A and B illuminated b- the images can
now be written as

(10) = D) ( P + to + " W +8 z2)1
At A VB( Ei' B 2(i+z) ,

V << w+q

D(' Z! [C() V -I+i8. t-, )+v I'
Bi = Bi B( Pi' + - 2) + VB(Pi, 2-1i+O1E-0, Zk

_W> 0> - (w+00,

and

i = Z, 2, (h-I),

where tne arguments can be obtained by using Fig. 3 with h = 4 as reference.

( 1 1 )T
(Ai)AS + Ai a- = +- eE+t T 1 (i+i)e8 ,

f. ý a = (Wi- 0 -0)
Bx BS Bi -

10
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(11)Pi Pi-. COS E + Po COS i0E, and

(cont)

i = 1,, -, (h-i).

The second-order diffraction terms obtained in Eq. (10) are appropriately
arranged for each boundary of the defined regions in Eq. (3), except
that the last boundary is given by 0 = + (ii/Z -(h+1)e•) if vr/26E is an inte-
ger, or 0 = (v -(Zh+I)0E) if wr/ZEE is not an integer. The boundaries
in either case correspond to the directions in which wedge S is illuminated
by the induced sources at A and B. Therefore, the coupling coefficients
from A and B to S can be obtained from Eq. (3) by symmetry as

(12) AC B(1) =ov 0,z)"SB = B(PE'

which gives rise to the second-order diffraction at wedge S as

(13) D(Z) [, nSA I s vB(PI, 0e ns0< <+
DO')S CM*S [v BlPE " 0 +0' -1s)] , E 0 6

cSA- E" E
SB Sj BPE~ 5E

'bSAý BE- 0,

6SB = OE+ 0, and

nS = Z - _ ZE

Now, we have completed the descriptions of all second-order
diffractions which physically take into account the effects of illumination
by the first-order-induced sources and mathematically eliminate all the
first-order discontinuities. Summing up the second-order diffraction
at A, B. W, and S gives

h-I

(14) D• ) D (.1) - < '

i= 1

A- /-<



h-I

(14) DB) -I + -
cont. i

4 )(A + O D) ) G)

D(SZ1 = D(1 E

where Eqs. (7), (10), and (13) can be used for computation. Following
the same procedure used to obtain Eq. (3), the second-order image
waves from the lower and upper walls can be obtained as

(15) (41) ) = 3v, -z )
AB LB (b B~0 2) + B(b, 2 Z(i+l)0 E -9,2

h-I

+ I c;Ak[vB(PkF !ZSleE_(e, 2) + vB(Pk, 23r-.(31+Z)eE)E-, 2)

k=l
u_(+1)6ý < o < -ie ;

( BA L B+2) j VBb,--2 -2(i+Il)E+O, J

h-i

+ I' CBk[vB(Pk, "-e*E~+e,2) + v (Pk, L~-31+z)6E+5, 2)
L 2 2

k=l

and

i=i,,3-- -h,

12



-where the 0 of DA and DW in Eq. (14) have been replaced by (±2i0-01,
respectively. Note that the boundary of the last image i=h should follow
Eq. (11), if 1/20E is not exactly an integer.

We have observed above that while the first-order discontinuities

are eliminated by the inclusion of second-order diffractions, new dis-
continuities occur again at the boundaries of the regions defined in Eqs.
(14) and (15). These second-order discontinuities can be eliminated only

by introducing third-order diffraction. The higher the order of diffrac-
tion the smaller will be the magnitude of discontinuities. It is theoretically
possible to consider the order of diffraction as high as desired. In
other words, magnitude of discontinuities can be made negligibly small
if sufficient order of diffraction is included.

For completeness, let us consider higher-order diffraction. The
third-order diffraction at wedge A is caused not only by illuminations from
the second-order-induced sources at B and the images in the lower wall,

but also by Illumination from wedges W and S. In the same manner as
Eq. (14), the resultant third-order diffraction at A can be obtained as

h-1

D(3) D(3) + D(3) + Dr(3) + D (3)
A AB AW AS _ Ai

i=l1

Similarly, by including all the (m-) th-order-induced sources and images,
the mth-order diffraction at wedges A, B, W. and S and the images of the
corner reflector can be summarized as

h-I

(16) D(m) D(m) + D(m) (i) D (m
A AB AW AS + DAi

i=l

h-I
D (m) D D(m) +D(m) Dn(m)+ D(m

DB+ DBW+ BS DBi
i= 1

D (m) = D(rn) + D (m)
W WA WB

(m) (rn) (m)
DS = D SA + DSB

13
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(16) ( h,)i = D(M (0-2io,•.). and
cont, .

S._~~(in) _(in) ( .+ i E 0
W WSU )i DB Y=+ZiOE-G)

where the valid regions are identical to those defined in Eqs. (14) and
(15). The components in Eq. (16) can be obtained analogous to Eqs.
(7), (10), and (13) as follows (the equal sign following 3 in the parentheses
means "replaced by"):
(17) DAB= 1vB(b)+O, 2)+vB(b, 2 2)],

.. < O<W+o
j- - 0E;

(W) (mn)
DBA = D e=-0) >_ 8>0 -(W+BE)

"DWA =CWA [VB(PE- -EW', OE<-O<-9 E'

C(n-1) [v (PE' 2w -0-0, n0 "0E O> (Zw-00

i(m) [(m- E n

DSA CSAZ'IIVB(PE, 0-8,n5 )]

DSB DSA (8=-.)

D•')= c~>'l)],v(pi, •+Ie_+G, Z) + vB(Pj. Ž•-(i+2)8E+8• 2)],

_) D(m) (0=-)), !>0>-(w+9E;
Bi Ai Z- -

D(m) jrn-1) B(,+B_ Z, -<OKwe-

AW AW 2---

Bw= 7AW (e=-1 >-7->- --+F

- .1-.&-~.- ~ - 1



DAC C= cR [(Pr,- -oV+o, z)] < < r+ OE
cont.

and

D£ )= Dm) (0=-0), > _ > +
BS AS Z

where the property of symir.-try with respect to E = 0 is used to obtain
symmetrical terms. The coupling coefficients of different orders are
obtained in Appendix C. As soon as coupling coefficients are properly

evvaluated, the diffraction of any order can then be obtained by making
use of Eqs. (16) and (17).

Finally, the total far-field pattern of the corner reflector can now
be obtained by superposition of all terms presented above. Taking

wedge A as a common phase reference, and considering only the upper-
half region, 0:< 0:5_w, the total far-field u(G) can be written in a form
similar to Eq. (46) as

(18) u(8 * + L [Ds(+ + (m)
L m=2 _jYAS A= 1$

+ (m)l (m )i ym
DW YAW + L Ai

Z j i=l I

+[' (T~ 1h

where the last images in the upper wall are included because in general
they may contribute to the upper-half region. The local ph.see factors
referred to A can be written from Figs. I and 3 as

(19) YAS = Exp. [I-jwpE cos(-OE +6)I

y AB =Exp. L-jiZwb sin 0],

15
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YAW = Ez-P. r-jZ,,PE coC (OE-N ] = yA.

YAI = Exp. L jz1p- sin (tQ+0)J.

and

yBh = Exp. [-JZirpi sin (hE-B)I .

IV. THE APPROXIMATED SOLUTIONS

The pattern of the corner reflector in Fig. I can be ca" zaIated
by Eqs. (18) and (19) at accurately as desired. Since the contributions
of the higher-order terms to the pattern decrease with increasing order,
computation can be made by including only those terms which are signi-
ficant in their defined regions. The following approximations are made
to obtain a pattern including only significant higher-order terms.

First, referring to Fig. 2a, the contributions from wedge S are
the geometrical optics terIi y of Eq. (1) due to the primary source,
and the diffracted terms D due to the induced sources. The lowest-
order diffracted terms are, due to the second-order-induced sources.
Thejr fore, the most significant contribution from the diffracted terms
isn • given in Eq. (14). CGomputation of the illumination intecrity,

CSA. indicates that for typical dimensions the magnitude of Djis
generally very small compared to the unit intensity of v . Neglecting
the diffracted terms, the contribution from wedge S may be approximated
as

as
(0) V* +) Dm •V = 1, O< O< Or&i)

m=Z

where the region of con.tribution is defined as such because only the
upper-half region 0 < 0< r is under consideration.

Next, consider the cor idbutions from the induced sources at A.
The third- and higher-order :ans of a typical reflector are also
generally very small compared to unity. Therefore, the diffacted fields
from A can be approximated by considering only DO and Dt" in Eqs. (Z)
and (14), respectively. The diffracted fields from B can be approximated
in the same manner. We thus have



h-1
1Z) D (n% DA+ + ) D(* 0< e8. wr> A AAB + D' W,

m-u i~l

and

h-I 0< 0<1

" D D(" •D + D BA + (D ) -

B BS BA B1 +6<e< _.

The lowest-order contributions from the induced sources at wedges
W and S are Df,) and DP which are also very small compared to the unit• * . a)
intensity of v . Since 1S is defined in the same region as v p le con-
tribution from D( zo the total pattern can be neglected. But. DW is
defined outside the region of v; therefore, in order to accurat'ely cal-
culate the side and back radiations in the pattern, we must at least
approximate the contribution from W as

)D ) D(Z) + ()

(22) W WA "1hB B

m=Z

As for contributions from the image terms, the magnitude, in
general, decreases with increasing value of i. In other words, in the
region of contribution, 0 < O< i/2 - GE, shown ir. Fig. 3, the images
contribute to the total pattern more significantly in the upper end than
in the lower end of the region. Therefore, in theory, approximation on
the images should be made individually. But, we shall approximate
images of the same order as a group so that all the images of the same
order can be completely included. Assuming that the second- and higher-
order images have negligible contribution to the tntal pattern, the image
terms are approximated as

(A

mi(m
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An approximate pattern of the corner reflector can now be ob-
tained f rom Ea. (18) by using Eqs. (19) to (23), as follows:

h-1

k24) u 9) I yv s+ [D + DAS AB Ai
i= I

h-1+ [D(M) 1() + D 2() AB

BS BA -• i
i=J,

+ [D(Z) + D(z) !
WA WB' YAW

h

"+ • 1 i Y) + I(1) 1
"L I Ai U h BhYAB

j=l

Since this is an approximated pattern, discontinuities are expected to
be increasingly noticeable with dncreasing size of the corner reflector.
Let us examine, term by term, the continuity of Eq. (24) in the upper-
half region, 0 • 0:<. w. At 6 = .E, the discontinuity of v in Eq. (20) is
elimAinated by DM) At 8 = w/1Z, the discontinuity of D9 in Eq. (21) is

eliminated by Df; but there are no higher-order terms included in
Eq. (24) to compe~nsate for the discontinuities of DWz and D(3 ', with

BA B
1,2, - - (h-l). Similarly, at 0-- -(Tr+BE), the discontinuity of D(11

(1) BS
is eliminated by D but those of .- A and D(2) with i = 1, 2, - - (h-1),

WB' Bil
are left uncompensated. The discontinuities at 8 = w/Z - iBE of QlL'i

are all eliminated by D( a D i 1, ,-- _{b.l). The di,-

continuity of (1())h takes place in the defined regions of v and is usually
unnoticeably sms11. The discontinuities of D(Z) and D(2) at 8- BE are

also unnoticeably small for a typics.1 corner reflector.

Within the accuracy of the approximations made to obtain Eq. (24),
i, is desirable to have the pattern continuous in the entire region. To
accomplish this, the second-order discontinuities at 8 =wi2 and -(w+OE)
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mentioned above need to be eliminated. The coupling coefficients from
B to A resulting from the second-order-induced sources at B can be
obtained from Eq. (14) as

(25) D) (-= ),B B 2

=BA [VB(b, 0, 2) + vB(b, - 2ze, 2)1

h-1

+ C [�ivB(Pi, iOE, 2) + vB(Pi, ii- (i+Z)OE, 2)j
i=l

h-1

c()c ÷ ()BA ABA ~ fi ABi
i-ii

h-i

"AB ABA Ai ABi

where Eqs. (9) and (10) are used and property of symmetry is employed
for the first-order coupling coefficients. By symmetry, the second-
order coupling coefficient from A to B can also be obtained from Vqs.
(14), (7), and (10) as

C~l = D() (0=- C.1=

BA A 2 AR*

Because of the interaction between A and B by C(Z)a third-order dif-AB'i
fraction can be written for A and B with the same defined region in Eq.
(14). If the process of interaction between A and B continues to infinite
order, a coupling coefficient can be obtained in closed form as

CIACAB+ £ Ai

(26) CAB = P
1-CABA



where CABA and CABi can be obtained from Eq. (25). The continuity
of the total pattern at 8 = w/2 is now ensured by using CAB instead of

C()for D(2 aid Eq. (24) asAB AB BA

(27) DAB = CAB [vB(b, 0 + 8, 2) 4 VB(b,<- - I,

and S0<ýO•c

S- ) + b - E 2) ,Z
DBA = CAB [VB(b, vB(b,

where Eq. (7) is used and the regions are restricted to the upper-half
region.

As a consequence of the modified equations in Eq. (27), the un-compensated terms at0=-(lr+OE) are now )A and DC.h,BA ndD.withi1,2

- -(h-I). The coupling coefficient from B to W resulting from these
terms can be written from ýýqs. (27) and (10) as

h-i

"ýWB DBA B

h-(
C DA (0=Ir+ OE) + DW

CA= DAB (8= w+BF) + Dh) 8e='+BE)
WA ABAi = rBE

i=l

I [VB(b, 377 + BE. 2) + vB(b, -8 )

h-iA (B) (,E Si

+ CAi IVB(Pi -,+ (+I) 8Et 2) + VB(Pi, - '--+l)E, 2)]
i=l

which is a new coupling coefficient to ensure the continuity of the total
pattern at 8 = -(ir++E) or w-8GE. Adding this new coupling coefficient to

C (1)in Eq. (7), the diffracted fields at W are modified as
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(28) DWA = CWA[vB(PE, -OE + 8 nw)]

DWB = CWA [VB(PF-, 2W'-0E-r0 nW)]

wh•ere

CWA = C() + C .
WA WA

Using Eqs. (27) and (28), an approximated "continuous" pattern
can be finally written from Eq. (Z4) as

h-I
(29) u() =[v*]IyAS + iD() +1 I

As Ai

i=1

+ [DAw + DBWI YAW

h

+ • [((L))i]YAi + [(1U )iIyBbYAB'

j=1

For typical dimensions of a corner reflector, Eq. (991 in general gives
excellent prediction of the radiation pattern. Examples are given in the
following section.

V. COMPUTED PATTERNS COMPARED WITH
MEASURED PATTERNS OF HORN ANTENNAS

To illustrate the validity of the corner reflector as a model of the
pyramidal horn antenna fed by a waveguide supporting TEi0 mode, Eq.
(29) is computed and compared with measured patterns. Figure 4 shows
the experimental set-up of a horn antenna in which the idealized miodel
is the corner reflector ASB used to derive Eq. (Z9). The associated

21
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CALIBRATED ATTENUATOR

AND IODE DETECTORE

f _ 20E

TE,r MODEB

Fig. 4. The E-plane of a horn antenna.

waveguide and the calibrated attenuator and diode detector are not con-
sidered in pattern prediction.

First, consider a horn antenna of pE = 41.3 cm and 2 0E = 35- fed
by a waveguide propagating the TE10 mode at 9.8 gc. The horn length.

PE. in terms of wavelength is equal to '3.5k. The measured far-field
pattern is Thown in Fig. 5. The pattern computed by Eq.(Z9) is shown
displaced 5 db below the measured pattern. Comparison of two patterns
shows excellent agreement in the overall lobe structure. The small
deviation of relative field intensity in the region 50* < 8< 80* is primarily
due to the approximation assumed in Eq. (23) that the second- and higher-
order images are negligible. The presence of the waveguide and the
associated attenuator and detector shown in Fig. 4 is responsible for the
interference in the region 80* < 8< 1.80" of the measured pattern. In the
process of computation, special care is required for the properly de-
fined regions of each term in Eq. (29). Attention is also needed for
the boundaries e)= dE, 90., ( 9 0 -1 8 E)' and (1 8 0 °-68 E at which discontinu-
ities are eliminated by higher-order terms. For convenience, the pat-
tern computed by only first-order diffraction treated in Ref. 5 is plotted
displaced 5 db above the measured pattern. As mentioned earlier, the
discontinuities at 9 90* and (l80*-tE~are expected in the first-order
pattern.
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When the frequency is increased corresponding to p E = 24.8k
for the same horn, the three patterns are as shown in Fig. 6. The
same conclusions drawn for Fig. 5 remain true, except that the inter-
ference from the waveguide and the associated structure tecomes
larger because Ithe physical size is larger in terms of wavelength.
In Fig. 7, three patterns are shown for a small horn antenna of
pE = 5.61K and Z8E = 21- 2'. Although the overall lobe structure is
still in good agreement with the measured pattern , a larger deviation
in intensity level is observed around 0 = 80* of the pattern by Eq. (29).
This disagreement results because the second-order image terms
neglected in Eq. (23) are not negligibly small for small horns. There-
fore, better patterns can be obtained for small horns by including the
second-order image terms and their subsequent effects on the total
patte rn .

The three examples presented above have demonstrated the
accuracy of Eq. (29) for pattern computations of typical horn antennas.
The accuracy of the experimental measurements is assumed to have I db
fluctuation when the intensity is around 40 db below the reference inten-
sity. In view of this, Eq. (29) is sufficient for horn antennas of typical
dimensions. When PE and OE become smaller, it is easily observed from
Fig. 7 that the second-order image terms in Eq. (15) shorld be in-
cluded to ensure good prediction around the region 0 = 90" - GE.

V1. RELATIVE BACK LEVELS

The radiation patterns, either measured or computed, always
have a back-lobe maximum at 0 = 180', even though this maximum value
is not necessarily the largest maximumn in the region 180* - eE < 0< 180-.
in Fig. 6, for Inatance, the largest maximum value in the region is at
176' of the measured pattern and at 0 = 172.5' of the computed patterns,
using Eq. (29). Tbis discrepancy results from the interference from the
experimental set up which is not considered in the idotalized reflector
model. The difference between the value at 0 = 180* and that of the
largest maximum. is generally small. Therefore, the radiation Intensity
at 0 = 180' can be taken as a representative value for back-lobe region.
D 1a also observed that the radiation intensity in the region 90' < O< 180*
-0E is, in general, smaller than the mentioned representative value.

In EMC problems, it may be desirable to keep the pattern level in
the region 90* < O< 180' as low as possible. To predict a representative
interference-t-ntensity in this region, one can simply take the first-order
diffraction termns in Eq. (Z) for approximate computation. Neglecting all
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higher-order terms, the radiation intensity at 0 180* is given approxi-

mately by

u(Or) = DO (6=v) + D (S

= 2 VB(PEZn- eE' 2 )

The radiation intensity at 0 = 0 is also approximated as

u(O) = YAs(O=o) + DA,(E=0) + D•s)

= Exp[-jI P.E Cos E]I + 2 VB(PE. w- 0E, Z).

where Eqs. (19) and (2) are used. The back-to-front ratio can then be

obtained by plotting

ZO log Iu(')I

which has only two parameters, 0E and pE" For a horn antenna of fixed

angle Et, the back-to-front ratio can be plotted as a function pE- Figure

8 shows seven curves for different horn dimensions to demonstrate that

Fig. 8 can be used for approximate prediction of typical horn antennas,

Fig. 9 gives a set of measured data for ZOE= 350. The data are taken

from nine complete patterns of the antenna. The accuracy of prediction

depends oa both the approximnaaion in computation and the equipment used

in measurement. In- general,, it is expected that the larger the sizes of

antenna the better tne prediction.

It is interesting to compare the first minimum points in Fig. 8 to

the defined optimumf 6] horn lengths. The, values of optimum horn lengths

are tabulated in Fig. 8 and are found to be one half of that of p which

give the first minimum back-to-front ratios.

The sets of pE and Ur giving rise to the minima in the curves do

not necessarily imply that u(O) ifs maximum and that u(w) is minimum.

The reason for this is the main loLe of pattern begins to bifurcate at the
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Fig, 9. Back-to-front ratio of ZOE 35

points where minimum back-to-front ratios occur. For a horn antenna
with 0o = 25', and PE = 6. 5K, 17k, 27K, 38k, and 48Xg where minima
take place in Fig. 8, the main beam of the pattern Is split into two,
four, six, eight, and ten lobes, respectively. As for EMC preblems,
Fig. 8 can be used to evaluate approximately the representative back-
radiation intensity u(w) relative to front-radiation intensity u(O). If

the horn antenna is large enough, it is generally safe lo expect that

the radiation irntensity on the average In the region 90° < 8< 180' -
is about 5 db lower than the representative value u(w) as shown in Figs.
8 and 9.

V11. CONCLUSIONS

The E-plane patterns, including far-sidelobes and backlobes, of
horn antennas has been formulated without employing aperture methods
and equivalence principles. Considering the various assumptions and
the mathematical difficulties inherent in aperture methods it Is shown
here that diffraction theory is more accurate and practical in analyzing

r;.diation characteristics of typical horn antennas.

The pattern of the proposed reflector model may, in theory, be
computed by Eq. (18) as accurately as desired. For reflectors of
typical dimensiona, the approximated pattern in Eq. (29) has been shown
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in -'.gs. 5, 6, and 7 to bt in excellent agreement with the measured
patterns of norn antemnias for which the reflector model is intended.
Comparisons with the first-order patterns Indicate that the improve-
rn'ents of Eq. (29) are maitA-y in the far-sidelobes and backlobes. As
a consequence of the approximations made to obtain Eq. (29), the pat-
tern level tends to deviate more and more in the region around 0= 90*
- E* when horn dimensions become smaller. Figure 7 shows that the
second-order image terms in Eq. (15) can no longer be assumed negli-
gible for small horns. In conclusion, Eq. (Z9) is generally sufficient
to predict patterns of typical horn antennas. If higher accuracy is
desired, the higher-order terms neglected in Eq. (29) may be included
for computation.

The curves of backlobe levels in Figs. 8 and 9 are approximated
by the first-order diffraction terms. More accurate prediction of back-
to-front ratios should include all higher-order terms which have signifi-
cant contribution -n the back-lobe region.
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APPENDIX A

REVIEW OF DIFFRACTION THEORY

The two-.dimensional problem of the electromagnetic field in
the neighborhood of a conducting wedge illuminated by a uniform plane
"wave was first solved by Sommerfeld[7] . The solution for a conducting
half-plane (zero wedge angle) was formulated in terms of the Fresnel
integral. Subsequently, Pauli[8] formulated the solution for wedges
of arbitrary angles in an asymptotic series in which the dominant term
is the Fresnel integral. The higher-order terms in Pauli's solution
become identically zero for zero wedge angle. Therefore, Pauli's
solution is used here for the general case.

Figure 10a shows the geometry of the wedge used by Paull to
formulate the solution of field intensity at P(r, 44 caused by plane-wave
illumination. By reciprocity, if the same wedge of a perfectly conduct-

ing surface is illuminated by z, uniform cylindrical wave from S shown
in Fig. 10b, the far-field intensity can be written from Pauli's solution
as

(30) v v(p, •4. n) ± v(p,,0'. n),

+ -

• = [p"o 'and

2o
n-2 - --

Tr

where the terms vt represent the incident and the reflected fields,

respectively. The sum (v+ + v-) applies when S is a magnetic line source.
and the difference (v+ - v-) applies if S is an electric line source. The
incident and the reflected fields are composed of geometrical optics

te--ms and diffracted terms, as,

P _ (v*)* + 4i
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(a) illuminated by a uniform plane wave

oP (FAR-FIELD POINT )

(b) Illuminated by uniform cylindrical wave

Fig. 10. Geometry of a wedge.
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TAhe geometrical optics terms are given by

(31) (v*)+ = v*(p, 4 Ai, n)

-fExp[jkpcos(± + ZwnN)], -w< + ZwnN < ,,

LO otherwise

N= 0, ±1, *22---

where the periodicity of the functions is seen to be Znw. The diffracted
terms are given by

(32) vB± (Po n)

FXu n 2 ICos..- 1 Ex"p (jkp coo *r

C n' o - cos

+ (Higher-order terms
negligible for large kp)

and

a= Iicoo 4-.

As (akp) approaches infinity, i. e. , as the line source S recedes to the
far-zone, the solutions in Eq. (3Z) can be written

Exp [-j( + kp)] sin!
(33) , = -

2wkp COB

For N=O in Eq. (31), the geometrical optics terms have discontin-
uities at the shadow boundary ( v) = w, and the reflection boundary ( ) =.

At these boundaries, the diffracted terms are given as

33
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l*
{•Exp.(-jkP) + - - - liran(-C)

(34) VB(Q -I=•, n) = )
+ 7 Exp. (-jkp) + - - - lira (W+C)

where the higher-order terms are negligible for large (kp) are not
presented. The solutions are essential in ensuring continuity at the
boundaries. Since we intentionally make the geometrical optics terms
in Eq. (31) defined at the boundaries, 4)k = +lr, the first equation of
Eq. (34) should be used to obtain the field intensities aL the boundaries.

The total far-field of the wedge illuminated by a uniform cylindrical
wave shown in Fig. 10b can now be obtained by using Eqs. (31), (32),
and (34) as

(35) u(p,Vn) -(v*)+ + vs+I 4.[(v*)- L VB-

where the reflection terms disappear if the wedge is illuminated by the

source with o = 0. If the source is an electric line element, the value0

of u(p, 4), n) is Identically zero for tP = 0.

The solutions in Eq. 135) are valid only in evaluating the far-field
intensity which is the main concern of present problem. The diffracted
near-field intensities of a conducting half-plane, i.e., n = 2, have been

solved by Nomura[ 91 and used by Ohba for dipole source illumination.
Since this solution is in a general form, it can easily serve to illustrate

principles of reciprocity. To generalize the solution further, the dif-
fracted near-fields of a wedge illuminated by a line source have been
written by Dybdal[A01 in a form as follows:

(36) v(rEx -jk(r-f_-_) [vB(b. 4, n)]

b~r
r+p

where the vB tc.-mo are given in Eq. (32). If the field point is in the
far-zone, v(r, p. 4 . n) is reduced to

34
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Ex £x[-ikrI +
v(r, . p.¢ n)= vp-r Lv(p.0_, n)]

which, with the common factor r- Exp[ -jkr] removed, is identical to
Eq. (3Z). If the source point recedes to the far-zone, the solutions in
Eq. (36) are reduced to

v(r p*n) Exp[-jkp vB(r,* 4,n)]J -
which, with the common factor p - Exp[ -jkp I removed, are identical
to the near-field solutions of a wedge illuminated by a uniform plane
wave.
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APPENDIX B
FAR-FIELD WAVES FROM THE IMhAGES

OF LINE SOURCES
=I

Consider line sources parallel to perfectly conducting plane
walls. The problem in this Appendix is to obtain the far-field intensity
of the image waves from 'he walls. The problem is a two-dimensional
one and the line sources can be either magnetic or electric line sources,

First, a directional line source is shown at point S in Fig. 1 1.
If a semi-infinite conducting wall is placed with an angle 8o with respect
to the horizontal reference axis, the image of the line source is formed
at point 1. The line source radiates a directional cylindrical wave to the

11%

1~ -Yr...

HALF-PLANE WALL

Fig. 11. Geometry of a line source and its im'age.

far-field and it is designated as v(6). In the presence of the wall, v( 8)
is reflected by the wall in the region -(w + 8o) < 0< - 7r/2. The reflected
wave is called the image wave from point I and can be described by

,37) It (0 = v-(0) = v(-Z-Go-6) - eoo !_ o8_ -(r - Go)

where the .auperscript minus sign implies the reflection of v(9). The
total far-field pattern can then be obtained by superposition of the two
waves as
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(38) = vW) t v(-z 0o - ys

and Ysa = Exp[-jkp sin, (0 + eo)J ,

where ys8 is the local phase-factor of the image referred to point S
and P is the distance between the image and the source as shown in
Fia. 11. This result is obtained by removing the common factor
R'1 Exp [-jkR), with R referred to S. The plus sign applies for a
magnetic line source, while the minus sign should be used for an
electric line source.

Next, a corner reflector of 26, is shown in Fig. 12a. Let there
be only one line source v(G) at A. Tn the region -(w - 0o) < O< -w/2, the
rays from A are reflected by the lower wall. Only rays in the ray -I
zone (from image -1) are directly reflected to the far-field. The rays
in ray -2 zone are reflected twictý while those in ray -3 zone are re-
flected three times inside the reflector, Consequently, three image
waves are formed in three distinct regions. The first image wave can
be written similar to Eq. (37) from Fig. IZa as

(39) v j- (6) = v (- 20o Z -,0 <" E- )< 0 .
2 0 -20

which Is obtained by replaciig the 0 of v(G) by (-20 ,- 8). The second
image is formed in the upper wall. This image wave can be obtained
by replacing the 8 of vl-(8 ) by (4ZOo - 0) as

(40) vz'(O) = v(-44), + 0), - 2 ) -e> 2-)

Again replacing the L of the above expression by (-Zo - 8), the third
image wave can be obtained as

vS-t 8) = v(- 6 010 - -),- 400S O<_ w7

This process can be used for any number of images. The number of
images is equal to the numbe. of ray zones determined by the highest
integer h such that h < /208o. Construction of the images in Fig. 12a can
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(a) Images due to a line source at A
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(h+ I A G _Y

~4&Y -(h+) P,

(b) Images of lower wall due to two symmetrical line sources

Fig. 12. Geometry of a corner reflector 7r> 2 41
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be extended to conclude that all the odd-numbered images are formed
in the lower wall, while the even-numbered images are in the upper
wall. Ln general, the image waves can be written

v(-2i~o- e) IT-i+I)e < O<2 i for i odd
(41) vi.(0) -z 8-2

Lv(-2ieo + 0) _[E-(i+1)0o] > G> -[7-ie 0  for i even,

i = 1,2,3- -- (h-I)

If the ratio of n to 200 is not exactly an integer, the valid region of the
last image should be modified as

(v-ho-) j _(h+1)0 0 < S_< -(2h+l) 0o h odd
(42) vh-(-P) =

v(-2ho+) -[1 -(h+l)%I > e > -[n -(2h+l)ej h even.S~2

The value of 20o in Fig. 12 is larger than w/4 but smaller than rIZ.
Therefore h is equal to 3 and the last Image is defined by Eq. (42)
for h odd.

Figure 1Zb shows two symmetrical line sources at A and B from
which far-field waves v(8) anid v(-O), respectively, are radiated. The
images of the source at A are identical to those in Fig. 12. Because
of the symmetrical properties of the assumed line sources and the geo-
metry of the reflector, the images resulting from the source at B are
symmetrical to those of A. Consequently, equal numbers of symmetri-
cal images are formed in both walls of the reflector. Maktng use of this
symmetry, the image waves excited by v(-0) from B can be obtained
similar to Eq. (41) as

v(-ZiE0 +e) -[M-(i+1) 0o] > e>-[!-ieo] i odd

(43) v 0(-8) = 2 2

Lv(-2ieo-e) " -(i+l)eo0 < 0<_ -io i even,

1= 1, Z,3--- (h-l)

In case the ratio ,r to 20o is not an integer, the last image wave has
its defined region as in Eq. (42) by interchanging h odd and h even.



Comparison of Eqs. (41) to (43) indicates that all image waves
from. the lower wall are combinations of vi-(0) with i odd and v•(-S)
with i even. The other set of combinations gives the image waves
from the upper wall. To summarize, the image waves from both walls

of the reflecto; ir -esignated by tQL)i and (YU)i as follows:

(44) (IL)i = v-( 0 ) = v(-2i06-0) , -U(i+i)0o< o<<_W.jo, lower wall;

(Iu)i =v-(_E) = v(_Zioo+e) , [ -(iI)eo] > Fj> J1-0.1 upe al2 2lowerwal;

i-= 1,2,3,--- h .

For the ratio of 1T to 2Z0 not an integer, modifications for i = h are

(45) (IL)h = v(-2h8o0 -), 2-l_+l) 0 < O< _r-(2h+l)00 ;

and

(1U)h = v(-Zh 0 +0). - [!!-(h+1)9 0 ] > 8> -b[r -(Zlh+l)0oj
2

bn Fig. 12b, three images in the lower wall are shown, Their far-4ield
intenijities cz.n be obtained by setting h = 3 in Eqs. (44) and (45).

Because of symmetry, only the upper-half region 0 < @< -r r~eeds

to be considered for tne radiation pattern of the reflector antenna. In

this region, the contributions are from the sources at A and B and the

images in the lower wall. Contributions from the last image in the
upper wall are possible. if the ratio of ?t to 20o i3 not an integer. Super-
position of all these contributions gives the total far-field Ate) as

h

(46) u(N) = v(O; + [v(-b)]jy. + (±W i1[(-2"e°-6)]yAi

+ =1

+ (-+l)h [v('Zh~o+8)]y.B Yl~h,



wbere (+l)' preceding the image terms vee used for magnetic line sources

and (-1)i are used for electric line sources. The phase factors are
introduced by taking A as phase-reference:

(47) YAB = Exp [-jkpo sin 0],

YAi = Exp [-Jkpi sibn (iE)o+0)]

YBh = Exp [-jkph sin(h8O-I],

Po = AB, and

Pi = Pj-1 cos Go + po cos (08o).

The above expressions can be obtained by considering the geometry of
Fig. 12. It is noted that each term in Eqs. (45) and (47) is set zero
outside its defined region.
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APPENDIX C
COUPLING COEFFICIENTS OF THE FOUR WEDGES

OF THE ANTENNA MODEL

The primary source at S in Fig. I illuminates wedges A and B.
The resulting diffractions are denotee as first-order. When the first-
order-induced line source at A illuminates B, W, and S, the diffractions
are designated as second-order. Likewise, A, W, and S are illuminated
by the ftrst-order-induced source at B. Therefore, the lowest order of
diffractions for W and S in our present problem Is second-order.

Physical significance of the couping coefficients in Eq. (17) can
be more clearly stated b, taklng Cj"i) as example. Wedge Bit
illuminated by the (m-Z)tn-induced sources at A, W, S, and (h-1) images.
There are then (h+Z) terms of (m-l)th-order diffraction waves induced

at wedge B. Combination of these (h+2) terms form.s a directional
cylindrical wave radiated from B. In the direction of wedge A, e 0
+ 7/2, the illumination intensity is therefore a combination of (h+Z)
terms in this direction. Writing out these terms yields

_(m-l) (mZ)C +(M-2) .AW 1B A 3C - C c + . C +C m-Z) CmZ
AB BA CABA BW ABW BS ABS

h-I

+ CCBi CABi

i~ 1

where the double subscripts denote (m-Z)th-order illuminations from
various sources to B. The triple subscript terms denote coupling co-
efficients from various sources through B to A. Similarly, for other
wedges and the images, symmetry property can be used to obtain

(m-I) (mn-) (m-Z) (m-2)

(CBA =CAB CBAB + CAW BAW + CAS CBAS

L "- -iQCBA 4 ,;6
idl



(48) =~ CAB ACAA + C AW CA + CASZ GAiS
(cont)

h-1 =
+ (ni-2) (m-i)
+ Ak CAik -BBi

k=1

(rn- 1) (m-2) +(rn-Z) _ (m- 2 )
AW CWA CAWA +WB CAWB BW

C(M-I) (m-2) +(m-2) I(M-Z)
GAS 0 SA SA A + CSB CASBCBS

c(M-I) C(M-Z) (m-2) C (m-2)
WA GAB CWAB + CAW GWAW + C~5  CWAS

h-1+ C (-2) CWA. B =c '

i=l

(ni-() (m-2) (rn-2) Cr-2)
CSA = uAB CSAB +CAW CSAw +C

+ (m-Z) (-I)
CAi 'SAi C SBj=!

Mn= 3,4,5 -- -

Equation (48) applies only for m > 3. For rn = 1, the coupling coefficients
are of zero-order and are not defined for our proble.,-n except for di-rect
illumination from the prinrary source at S. For mn = 2, the coupling coef-
ficients are of first-order and are given in Formulation of Solution as



(49) C(A)A C(I) 00%)

14)BA B -P:

CA = = VB(PE, Zvir,

9)A - c - VB(PEI 0).

and

" iCP) I P -(i+I)04 i ,Z'._ (h-1).

(rn-i )C l). ad C•m"l) .(rn-i)
Thj CW , C n S M 1) S are equal to zero, form= Z,

because there are no first-order induced sources at W and S. For rn x 3.
Eq. (48) can be written as

h-I

(50) C(.- () c (1c) C(2
BA A CBAB Ai CBAi zAB

h-i

(1 c +(.) C +()
"AZ AD CAAIk C.ik Bi

kal

= C( CAWA C(Z)
) WA AWA WB CAWB BW

ýA= SA' A•SA+ ()SB CASB = %So,

h-I

CWA AB A ,•CWAB I AtWAtC

j=I

and
h-i

+~l Y (CCC
AB i~ 1Ai SB'

where the triple-subscript coupling coefficients can be obtained from
the variable terms in Eq. (17) as
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(51) GBAB* CWAB* CA ' B(b. 2- + 2+ 60

CBWGAW SAW + VB(El+-0)

CBAS, CWASF CSAS =" vB(PEkl + Po e )

7!

CBAS, CWAS' G SAS ý vB (PE, w~ 0 o + VIDj 0 +(+2% 0)

ate8= (.!.o -(r 080 )

CWiS vB pEj# 2 l-Iorr) , a 8=0!

CA ~ i = B(Pkp +()0+())8+ 8).

I!

at 8= i 0

0 AA= VB(E at8O -ioat8

CAWB~~~~~B 2 BP32!.8.8,n)a o
*P

at~ 13 -



(Cont) ASA vB(pE0 eO + 0) at 0 00;

and

CASB vB(PE, Go - 8), at

Equations (49), (50), and (51) car then be ura to solve any order of
coupling coefficients from Eq. (48).
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APPENDIX D
THE SCATRAN SOURCE PROGRAMS FOR

NUMERICAL COMPUTATION BY IBM 7094

The sourc. programs for Eq. (29) and the associated subroutine
vB are presented here for reference. The input data required are the
horn length PE in terms of wavelength a%.ad the angle OE in degrees.

It is noted that the notations Q, R, rE, and aE in the programs
correspond to AB, pE, and 0E, respectively, in Fig. 1.
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INTEGERSuig-
FLOATING (NS4NW)-

COMPLEX (CQRQCQRI ,SCQJRI CwQ2.CiO1.SCEQI )-
COMPLEX (YR*XRSB*T3P)-
COM4PLEX 4CwOCGRCUXOS.Xok.xuoxRS.'RQXRXRSP,-
COMPLEX tXOPXRP.XWQOXWR.Xo8aqyosYUR.tO*uR.UTi-
COMPLEX (COMZ*T1.TZ.T3)-

COMPLEX (CEXPL*)-
DIMENSION (R(200).CQ(ZOO).XQ(2OO),XR(ZOO),XRP(2OOJ)-

DIMENSION (XQS8(20Q)-.YG(2OO))2 -
LITERALS (P1 .3e14159265.RAO, 0 01745329,P12e6e2831O53)-
DIMENSION (YR(ZOO)*XRSbi(Z0O))-

LITERALS (COMZ*0**Ie0*;PIOH*1c57O?9A-3)-
C ~ INPUT -

'401 READ INPUT *8*(NCS)--

00 THROUGH (H23j*INz0*1.IN*iL*NCS-
READ INPUT 9HFOI,4RE*,ALPHE)-

C CALCULATION OF CONSTANTS -

ALRZRAO* ALPHE-

PROVIDED IM*EoPI/(Z*ALR)).tHzH-I-

R=2*.RE*SIN. (ALR)-.
BxR-
DO THROUGH (HO2)9Ial1.IvILE.il-

R( I JRt I-i IOCOS. (At.R)iR*COS. 4 *AjR)-
TRANSFER (H02) PROVIDED (I.GC.hl-
CALL SU1bROOTINE (RVB.UVa)=VB*(PIZ.RE.PIOH-4I+1)#AL.R.Zo)-

C04 I =RVB+etI .VB-
M02 CONTIkUE -

CALL SUBROUTINE IRVEýi-UVd)aVv8(Pl~zB.PI-2*ALR*2.)-
CQRGORV84+*I .UVd-
CALL SUBROUTINE (RVLe.UVt)=Vd*(PI2*890*sZ&,-

CGRQQ3COQR(RVB-*I.I.UVBI-
CALL SUBROUTINE (4Va.UVB)aV8.9(PI2.RE.PIOH-ALR,2.)-

CORlzRVB+. I UVd,-
SCOR I COMZ..

CALL SUBROUTINE (Rvai.uv81i~Vi5.(PiZR(I).I*ALR.Z.)-
CALL SUBROUTINE (~.V)V~(l.()P~I2~L,..

RVB1=Rvsl+eRVB-
UV8I sUVBI+UVB-
CALL SUBROUTINE (RVB.eJve)saV8(PiZRE;PIOH-(Ifi)IOALR,2.)-

mO2A SCORI=SCGRI+4RVB1+,l.UVB1)u(RVB4.I.uvi3I-

CALL SUBROUTINE (RVB.UV8)2VB.(PI2.8.3.#PIOHALR.Z.)-.
CWOZBRVB+e I UVB-
CALL SUBROUTINE (RVBUV8)zVdo(l~.i3.5.*PlOH-ALR.2.),.

CWOZS (CWOZ+ (RVd+. I uval)*ICR-
CALL SUBROUTINE (Rv8*UVt$,=Vad.IZ*REPI2%?*)-

CWOI zRV5+. I UVd-
SCWQ I COMZ..
DO THROUGH (O8.sJ1-,.EI
CALL SUOROUTINE (RVB1.UV8I)mKVB.tPIZsR'i).J*oPIOH~tI~l)*ALR

tz. )-
CALL. SUBROUTINE (Rv6.UV8)zVBotPI2,R(~)e5.*PIOH-(I+I)*ALR.2

RVB 1ZRVB I+4RV8-
U8UVB:zVBI+UVB-
CALL SUBsROUTINE (RV8.UVB~a.Vl.(PEZREP1O.1-(I+I,*ALROZ.,..

C C~ ALCUL.AT ION OF VAQIA&.ýES -



DO THROUGH (HZZ)*KaCol*K.LE*1dO-
THiETA=K*RAO-
CALL SUBROUTINE IRVB*UVf3)zV8.(PIZ.RE.PI-ALR+THETA.2.)-

XQSzRVB, I .vVB-

CALL SUBROUTINE (RVB.UV83)uVB.(PI2,RPIOH4THETA,2.)-
x0RMQvB+. io.tJY-

CALL SUBROUTINE (RVB.UVb)sVtd.(PI2.,R.3.*PIOH-2.*ALR+THETAs2

X0RNXGR+(RVBi-. 1 vv8 -
YOS:CEXPLi(O.4'.Ia-PIZeRE*COS~tTHETA-ALR I-
YOR1CEXPL.(0.+.I.-PI2#R*S1N.(THETA) )-
DO THROUGH (HO3)4IzH-I*-1I*IGE*I-
CALL SUBROUTINE (RV8.UVC3)=Vd.(PI2.R(I),PIOH+Z4ALR+THETA.Z.

X04 I 'RV8+. I.Uvtd-
CALL SUBROUTINE (RVB*UVB)=VB.(pI2.R(I),3.*PIO$i-(1+2)*ALR+T

HETA.Z. I-
M03 XQ(tl=XQ(IY+(RV6+.I.UV*3)-

PROVIDED (THETA*G*ALR)#S=O&-
TRANSFER (H05) PROVIDED (THETA*G*PIOH)-
CALL SUBIROUTINE (RV8.JVB)z~vl3.(PI2,RE.PZ..ALR-TbIETA.Z.)-

XRSzRvB+*. I V6-
CALL SUF-qOUTINE (RVB.UVtb)=VId.(PIZR.PI0M-THi-TA.Z.)-
XRO=RVB4. I UVU-
CALL SUBROVTINE (RV5.UVt3)=VLI.(PI2.R.3.tPIOH-2**ALR-THETAZ

XAG=XRQ+(RVB+. I.UVB)-
0O THROUGH (0)IM1~..E1

CALL SUBROUTINE (S4VBUV8)=VB.(PIaR( I )PlOH+I*ALR-THETA.2o
I-
XR(I )%RVB+*I*UVB-

CALL SUBROUTINE (RVB.UV8)zVIb.(PI2qR(I),3.*P1OH-(I*2)*ALR-T
META*2. )-

TRANSFER (H07)-
M05 XRS=COMZ-

XRQxCOmZ-
DO THROUGH b0)IH...Ie.l

$06 x(RtI)=COMZ.-
H07 TRANSFER (M08) PROVIDED (THE-TA*L*ALR)-

CALL SUBROUTINE (RV8.*UVd)=VB.(PI2.RE.T$ETA-ALR..%d)-
XWQXRIBl I .UV8-
CALL SUBROUTINE (RVB.UVIb)aVB.(PI2.RE*PI2-THETA-ALR.NtW)-
xwRZRVB.. I UVB-
TRANSFER ($09)-

Moe8 xwo=COMZ-
XWRNCOMZ-

M09 TRANSFER (HIll PROVIDED (K*L*180*-ALPHE)-
CALL SUBROUTINE IRBU6wd(toE34IARTEA2)

XRSPSRV84. I UVI3-
CALL SUBROUTINE (rtV8.UVV)uV8.(~I2.R,5.FPIOH-T&1ETA*2.)-

CALL SUBROUTINE (RVBuvB)zVBofPi2.R.7.*PI0H-2.*ALR-THETA,2

XRQPOXROP. (Rve4. I uv8I-
D0 THROUGH $Oz-I-,.E4
CALL SUBROUTINE (RV8*UVB)EV5.(P12.R(I).5t*P1O$4+I4ALR-TIETA

XRP( I )RVB+ i *UV5-
CALL SUBROUTINE ;RVB.UVB)aVb.(PI2.R(II.7.ePIO1I-(l+Z)OALR-T

META.2. I-
"$10 XRPlI)xXR0(Il+(RV6+*IwUVas)-

TRANSFER (M13)-
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Hit ý%ROPsCOXZ-

0O ThROUGH1tlZ..-1-..E1
"#12 QPCI)mCoIZ-

TRANSFER CiHI4) PROVIDED CK.L.90o-4'I1It)ALP14E.0RoKsG.9O.-I
1*ALPIIE)-

YOCIIisCEXPL.C0.+.I.C-PI2*R(11)'SINi(I*ALR+THCTAI))-
CALL SUBROUTINE (RVB*UVi8).VB.(PIZ2REi;PI-(2*,tiJ9ALR-THET4

XOSBCiI )uRVB4-.I*uV8-
TRANSFER IR15)-

H14 YCCII~s3COmz-

XOSBC II )mCOMZ-

rf415 CONTINUE
TRANSFER (H416) PROVIDED (K.Le.CZ*14+. 3ALPHEC18O..OR.K.G.CH4

I )*ALPHE-9O. )-
YRInI)CEXPO.+.I.CoPI2*RI24IE)SIN.U14+1)*ALR+TI4ETA)))-
CALL SUBROUTINE CRVB.UV6)z&V8. P!2,RE.PI-C2'#,I )*ALR*T14ETAo

2.)-
XRSBf4S)*RVSB1. 1B
TRANSFER (H419)-

1416 XRSOCH)mCOMZ-
YRC#1)SCOMZ-

M19 CONTINUE -

TRANSFER C1419A) PROVIDED CIK.L.9O.-(H*I )*ALPI4E.O)R.K.GG)80e-

(2*14+1)*ALPME)-
CALL. SUBROUTINE (RVB.UV8)zVid.tPIRjE.P1-(2**1+1)*ALR-T#1ETA*

2.)-

YCJ(t)ZCEXPL.CO.+.1.C-PlZ'RCM)*SIN~tC14rI*ALR'TI1ETA)))-
TRANSFER 41419t)-

#119A XQSBCH)=COMZ-

Y(GC14uCOMZ-
14195 CONTINUE -

C ' ~ CALCULATION OF OUTPIJZ' VALUES -

UR*S*YQS+XOS+(CXRS+XRSP I*YOR-
T3P*'COMZ-
T1-COMZ-
T2*COMZ-
T~3aCOMZ-
00 THROUG1 #2O.u$)-IIGEI
TtsTI+CQ( I)*XQ( II-

H420 T2uT2+CG( I) (XRC I +XRPC I))-
D0 THIROUi..~ NlIH-e.E

T3PsT3P+XGS8~fl)*'r0CI I-
2142 T3uT3+XRS8C I)*YRC I -.

UTJIUR*CWO*(*0W+XWRj YQS4COR*XOR+T1*(COR* CXRO+XRQP),TZI*YOR+
T3,T3P-

PROVIDED tTH-ETAqNE*O.)s TPAIISPEA INZIA'..

uR~mCFrA0iS. UR)-
vTZsCFABS. CUT )-

C *** PRINT-OUT OF VAR!AdLES-

IALPHEm10o*ALPtIE-
IREs)O**RE-
PUNCH CARDS .11F06*CIALP'1E*IRE)-

P42 1A CONTINUE -

FUTv20.*FLOGI * (AdSeUT/UTZ I-
FUR.ZO.*FLOG1 * C AdSoUR/VRZ)-
IFUTIK)xIFUT*9O. 1*20.-

IFURtK)aCFUR+90w )*20*-
KKCKJw6w66666667*-

DIMENSION cIFUTCI8I)*dFURCIGIIKKNCISI))-
"#22 CONTINUE-



H23 PUjNCH CARDS .HF07?(KX(I),itUT(1I~.I*O.1.J.LE*1oOJ)-
"F HFOI (ZFIO*S) -

"F Mob 4242X*13)) -

"F H07 (1814)-

CALL SVE)QOUTINE ()OENDJOS*W-
END PROGRAM thO))-



**SCA1'RAN 
Rvoo

SUB3ROUTINE (RV8'UVB)zVBo(IýK*ARGvANGLEkFN)- UtOI
PROVlOEO(eAdS.(.8SANGS.ANGL3419265 

5 sE*6OUI~TRANS TO
(ALTER) -

CONST 3 *14159265/FN-
COSANG COS.(ANGLE)-
x =FK*ARG*11.+COSANG)
CALL FUNCTION (C)=QFRESN9(X) -
CALL FUNCTION (S)zUFRESN*0c) -
RCOEFF =COS.(FK*ARG*CO$AN,.I -

UCOEFF =SlN. (FI*ARG*COEANGj
PREST n.5-C/Z#-S/2.
UREST =S5/2*-C/2* -
COEF=(I*/FN)*SIN*(CONST) *2.*.ABS.tCS(NGE2)/(~*C
NST)-COSvtANGJ.EPN)) -

UVB=COEF*(RCQEFF*LJREST+UCOEFF*RREST) -
NORMAL EXIT -

ALTER RVB=-*5*COS. CFKfARCG)-
UVB=+*5*S IN. (FI*APG)-
NORMAL EXIT -

END SUBPROGRAM -

END PROGRAM
**STATEMENT LISTING
*'SCATRAN 

FRESDOQO
FUNCTION (C) =RFQESN* (X) -
PROVIDED (X.Go)O.)* TRANSFER TO fAbYMP)-
H SQRT*(Zv*X-'3e14Ib9Z7) -
C H $

PROVIDED 1*ABS*ct4,.L~..oOI,. TRANSFER To (DONE) -
0O THROUGH (LOOP). L,=19I.PROVIDED (*AbSotH)eG.oo000I)

LOOP CONTINUE-
TRANSFER TO (DONE)-

ASYMP, 51 I*
ASI SI-
STEMPI = ABS&(Sl))
DO TH4ROUGHi (LOUPI)) Lz292*PPOVIDED lsAo~Sv(SI)*G**O0OIAN~oST
Et4PI/*ABS*(S3)*GE*).

1
STEAPI - vA8S-(Sl4

ASI ASI +4 SI
LOOPI CCONTI NUE -

52 *5./x -
AS2 z 52 -
STEMP2 = *ABS*(SZ)
DO TtHROUGri (LOOPZ)l L-13 -ý*PROVIDED feA13S*(SZ).G**OOOI.AND#ST
EMPZ/#ABS. (SZ ) .G~. 1.)
STEMPZ c *ABS.(52,

AS2 AS2 SZ
LOOP2 CONTINUE

C =.5 + (SlINXI /S(URI\k6.283igs.4.X:.ASI (CS(X/~j~(
*Z831854*X,).ASZ -

DONE NORMAL EXIT
END SUBPROGQAM-
END PROGRAM -

**STATEMENT LISTING
**SCATRAN 

UFRE00OO
FUNCTION fS) =UFRE',-Ns fX) -
PROVIDED (X.G.IO.). TRANSFER TO tA:ýiYMP)-
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H SQRT*(2**X/3*14Ib927)*X/Z3&

S S +

LOOP CONTINUE-
TRANSFER TO (DONE) -

ASYMP Si z. e
ASI SI
STEMP) *ABS*(SI) -

00 THROUGH (LOOPI)) L=2o29PROVIOEo C.AdSo(Si)aGe*OOOIoAND*ST
EMPI/oA8Se(S1)*GE..Io)-
STE'4PI c *A8So(SI) -

SI Sl(-9*2* l)(*L- -(4**)

ASI ASI + Sit

LOOPS CONTINUE -

S2 o5/X-

AS2 S2 -

STEI4P2 = oA6So(S2)-

00 THROUGH CLOOP2). Lz3,2oPROV!DEO (*AbS*(S2)*Gs*0O0I*AND*ST
EMP2,.ABSo(S2)*GEoI*)
STEMP2 =*A5S*(5S -

S2 m2(.(.L.(.L.)(.*)
AS2 z ASZ + S2

LOOPZ CONTINUE -

S -. 5 - (COS.(X)/SQRT.(6.28Zt854*XV))ASI (SjN.(X)/SORTo(6

*283I854*X) )*AS2-
DONEt NORmAL EXIT -

END SUBPROGRAM
END PROGRAM-
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